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Flow topology associated with disjoint eddies in an asymmetric film-splitting problem
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In a film-splitting problem where recirculation is present, theoretical arguments lead to the joint eddy flow
topology, where two eddies, attached to the interface, share a common streamline, and the disjoint eddy
topology, where only one eddy attaches to the interface. The second, interior eddy is then separated from the
former by a meandering streamtube. The disjoint eddy topology is shown to be generic if any asymmetry
source is present. Original measurements of the velocity vector field are combined with spectral element
simulations of the flow to support the theoretical developments.

PACS number(s): 47.15.Gf, 47.11.+j, 68.10.—m

The film-splitting flow considered in this paper may be
thought of as a type of Hele-Shaw cell with slowly diverging
walls. It constitutes the stable state of directional viscous
fingering (DVF), a one-dimensional system which has re-
cently been studied quite extensively [1]. The flow occurs in
an industrial process known as roll coating in which two
moving cylinders drag a fluid through a very thin gap, where
it splits into two films, one attached to each cylinder. An
adverse pressure gradient keeps the fluid-air interface sta-
tionary in the laboratory frame of reference. An instability
called ribbing, analogous to DVF, occurs when the cylinder
velocities exceed a critical value; it is the subject of many
investigations [2]. The features of the flow under
consideration—a highly curved interface near slowly diverg-
ing walls at low velocities—are also seen in other situations
such as flows near a sharp corner or interface shapes near
dipoles [3]. Understanding of the flow topology is thus of
quite general interest. The symmetry of the problem about a
plane [shown as a dotted line in Fig. 1(c)] going through the
center of the gap, and parallel to the cylinder axes and to the
flow direction, may be broken in three ways. First, there may
be a component of gravity acting across the flow. Second, the
cylinders may have different radii. Third, they may have dif-
ferent velocities.

There is considerable analytical [4] and numerical [5,6]
work on this flow. Three types of flow topology have come
to be associated with the region of flow downstream of the
thinnest part of the gap (the “nip”’), in cases where the flow
is steady and the flow rate is sufficient for the flow through
the nip to be unidirectional. The simplest is shown in Fig.
1(a). The flow divides at the stagnation point on the free
surface, one part of the flow forming the upper film, the other
forming the lower film. This topology is known to occur
when the cylinder velocities are relatively high [4~7]. It has
long been known that at lower speeds a recirculating flow
topology forms, in which there are six stagnation points:
three on the meniscus, one interior separation point, and two
eddy centers. This recirculation has generally been assumed
to have the joint eddy structure shown in Fig. 1(b) [4]. How-
ever, asymmetric finite element solutions reveal an asymmet-
ric flow structure, shown in Fig. 1(c) [5]. In this case the
eddies are disjoint, one of them being detached from the free
surface and allowing a wedge of fluid to move around it and
“snake” back between the two eddies, finally attaching itself
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to the opposite cylinder. Which topology will be encountered
in practice is a major question for roll coating, since the
presence of the “snake” will modify the mass transfer be-
tween the cylinders.

On the experimental side, work has until recently been
mainly restricted to the measurement of the applied film
thicknesses downstream of the film-splitting zone [4,5]. The
evolution of experimental techniques in this field [7-9] has
led to quantitative knowledge of the film-splitting shape [10]
and detailed measurement of the velocity field beneath the
free surface.

In the following, we provide full evidence that for stable
asymmetric film-splitting problems where recirculation is
present, the flow topology is of the disjoint eddy type: first,
on the basis of theoretical considerations using dynamical
systems theory, second, by performing original particle im-
age displacement velocimetry (PIDV) measurements in the
vicinity of the free surface, and finally by comparing these
results with a spectral element simulation for the correspond-
ing Navier-Stokes problem. For a review of PIDV, see [11].

The purpose of the theoretical analysis is to apply simple
dynamical systems theory to demonstrate that the asymmet-
ric flow topology of Fig. 1(c) is more generic than the sym-
metric one, and will therefore always be seen in practice
unless the operating conditions are entirely symmetric. Sym-
metric operating conditions imply equal roller speeds and
radii, and gravity acting along the line of symmetry of the
flow.

Two arguments are proposed. The first argument concerns
the structure of the separation streamlines linking the stagna-
tion points and their stability to a small symmetry-breaking

FIG. 1. Possible 2D flow topologies for a film-splitting problem.
Dashed lines represent inner streamlines, the full line displays the
fluid-air interface. (a) no eddies; (b) symmetric, joint eddies; (c)
asymmetric, disjoint eddies.
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perturbation. The second argument concerns the nature of the
transition from nonrecirculating to recirculating flow, as a
parameter such as the mean roller speed is varied.

First, the symmetric flow of Fig. 1(b) contains two sets of
streamlines, ABCA and ADCA, that are heteroclinic orbits,
each linking three stagnation points. In contrast, Fig. 1(c)
contains only one pair of heteroclinic orbits, DCD, and one
homoclinic orbit AA. We consider the effect of a small
symmetry-breaking perturbation of the flow of Fig. 1(b) in
which a cross-flow from top to bottom is superimposed. In
such a case, all streamlines crossing the line of symmetry
[shown as a dotted line in Fig. 1(c)] must do so from top to
bottom. This implies that the two stagnation points A and C
are displaced. It can be seen from Fig. 1(b) that streamlines
moving from top to bottom lie below A and above C. There-
fore, in order for these streamlines to cross the line of sym-
metry, A must be displaced upwards and C downwards. As a
result of these displacements, the streamline CA is broken,
since otherwise it would cross the line of symmetry from
bottom to top. Instead, the streamline from C must stay be-
low the symmetry line and go around eddy E towards stag-
nation point D. The condition of incompressibility (implying
that the streamlines around the eddy center E are closed)
ensures that it must reach D exactly. Similarly, consideration
of the flow around F shows that the streamline moving up-
wards from point A is a homoclinic orbit, lying entirely
above the symmetry line, missing points B and C and return-
ing to A. Thus, the effect of the small transverse perturbation
is that the symmetric topology of Fig. 1(b) is broken, and
replaced by that of Fig. 1(c).

For the second argument, we consider a symmetric tran-
sition from flow 1(a) to flow 1(b) as a parameter (such as the
mean roller speed) is varied. In this case, the five stationary
points are created at the same place and at the same value of
the parameter. In contrast, for the asymmetric transition from
flow 1(a) to flow 1(c), two separate transitions occur; one
forming the attached eddy E, the other forming the detached
eddy F. Let us consider the fluid velocity along the menis-
cus, v, , as a function of the curvilinear coordinate along the
meniscus, s. When the flow is recirculating this function has
three zeros, corresponding to the three stagnation points on
the meniscus. Only one of these points survives when there
is no recirculation. Taking s to be zero at this point, and
starting from the assumption that, close to the transition, the
three zeros are at least close to each other, we examine the
Taylor expansion of v, (s). Clearly, in order to have three

zeros we need to include third order terms. Since
v,,(0)=0, we may write
v,(s)=s(a+Bs+ ys¥+ o). (1)

The coefficients «, B, and vy each depend on the parameter
(e.g., mean roller speed) controlling the flow structure. The
transition to recirculation corresponds to a change of sign of
Bi—4ay.

If the flow is exactly symmetric, then v, is antisymmetric
in s and B is thus zero. The transition then corresponds to a
change of sign of a and the extra zeros appear at s=0.
However, if the flow is asymmetric then there is no reason
why B should be zero. In this case the birth of the extra
zeros, with the associated eddy E, will in general occur away
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from s=0. This transition has the following local stream
function representation as parameter N passes through zero:

g=—=Ny+x%y+y3, )

where y =0 represents the meniscus locally. This transition
creates only the attached eddy E. A second transition is re-
quired for the detached eddy to appear; it is of the type

¢=—)\’y'+x'2+x’2y’+y’3. (3)

The notation x’, y’, and N\’ emphasizes that the transition
occurs at a different place and orientation, and for a different
value of the parameter, than the one on the meniscus.

Depending on whether A" =0 corresponds to a negative
or a positive value of \, there will be a range of the param-
eter for which there is either an internal saddle point with
associated eddy but only one stagnation point on the menis-
cus, or an eddy attached to the meniscus but no internal eddy.
These two arguments provide the theoretical basis for claim-
ing that the recirculating flow topology seen in practice will
either be that of Fig. 1(c) or of its reflection (snake going
from bottom to top), depending on the source of asymmetry.
The joint eddy topology will only be observed as a transi-
tional case when the sources of asymmetry are either absent
or exactly cancel each other.

In order to verify experimentally the preceding theoretical
arguments, we have used the same setup as for previous
studies of the meniscus [10]. It consists of two steel cylinders
of radii R;=67.5+0.02 mm and R,=27.5%+0.02 mm, re-
spectively, with their axes located in a plane inclined at 45°
to the horizontal. The width A, of the gap separating the
cylinders can be selected to within 0.03 mm, while the accu-
racy on each of the (independent) tangential velocities U,
and U, is 0.2 mmy/s. The subscripts 1 and 2 stand for the
upper and lower roll, respectively. The lower cylinder is im-
mersed at a depth of 10 mm in a container filled with the
fluid Rhodorsil 47V500 silicone oil (Rhone-Poulenc), with
dynamic viscosity u=0.54 Pa s, surface tension o =0.0209
N/m, and density p=970 kg/m>. For this demonstrative case,
only one experiment is discussed, with hy =0.64 mm,
U,=U,=5.4 mm/s. Under these conditions, the correspond-
ing dimensionless parameter, the capillary number Ca;
=pU;/o, is the same for both cylinders, Ca;=Ca,
=0.14%0.005. The only apparent sources of asymmetry are
thus gravity and unequal roll radii. In order to implement the
PIDV technique, the fluid is seeded with Iriodin 111 particles
(Merck), of approximate diameter 5 pum, at a dilution of 0.8
g/dm3. A very thin (0.1 mm) argon ion laser sheet illuminates
a plane perpendicular to the cylinder axes, 40 mm from the
left edge of the setup. A prism is put at that end, in contact
with the fluid, acting as a window to enable a microscope to
film the particles illuminated within the laser sheet. The field
of vision of the IEC 800 CCD camera (i2s) is a 2.51X2.85
mm? box, yielding a spatial resolution of 4.9X5.5 um?. This
window includes the meniscus region, the recirculating ar-
eas, and part of the cylinder walls (see Fig. 2). The calibra-
tion technique is the same as in previous works [10], with the
exception that the optical path between the prism and the
calibrating part is filled with the fluid to cancel refractive
index effects. The resulting accuracy is equal to 15 wm for
relative measurements (two points in the fluid) and 0.1 mm
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FIG. 2. Experimental particle tracking: superposition of 16 suc-
cessive images. Progressive time coding in darkening gray shades:
ty (= 0 s) light gray; ¢;5 (= 0.6 s) black. The calibrated X and Z
segments represent 0.25 mm.

for absolute measurements (a point in the fluid vs cylinder
walls), but could be larger due to optical edge effects at the
prism [9]. The flow is filmed at video rate (20 Hz) with 10
ms exposure time. First, a qualitative diagnostic of the flow
can be performed by superimposing several pictures of the
flow at constant time intervals. Figure 2 displays such a se-
ries of 16 successive snapshots of the flow, at intervals of 40
ms. This “particle tracking” technique clearly displays the
flow topology, with a snake swirling around two disjoint ed-
dies, only one of them attached to the interface. The two
dimensionality of the flow is guaranteed by the fact that par-
ticles remain visible in the laser sheet throughout their pas-
sage in the field of vision. The particles follow the stream-
lines well, closing trajectories over several turnover times
inside eddies. To obtain a quantitative diagnostic of the flow,
PIDV is applied to two successive video images, separated
by 40 ms. A cross-correlation scheme [12] is applied to the
images, providing the displacement vectors on a grid of 800

% (mm)

X (mm)

FIG. 3. Experimental 2D velocity vector plot at #;,=0.64 mm,
Ca;=Ca,=0.14. The scaling vector in the upper left corner is 2
mm/s long. Meniscus shapes: PIV (crosses); laser fluorescence
(pluses); numerical simulation, Q/Uhy=0.65 (squares), Q/Uh,
=0.7 (diamonds).
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points. The resulting velocity vectors are determined to
within an accuracy of 3%, with an upper velocity limit of 2
mmy/s. This is sufficient to resolve the velocity field in the
eddy regions, but not closer to the cylinder walls, where
U=5.4 mm/s. The measured velocity field is displayed in
Fig. 3. The origin is located in the middle of the nip, and the
Z axis joins the centers of the cylinders. The recirculating
features are well apparent, with the snake in between. The
meniscus position is determined midway between each par-
ticle and its reflection in the interface. This is a potential
source of inaccuracy, as the interface acts as a mirror of as
yet unknown shape. Estimation of the flow rate from the
measured velocity profile yields Q/Uhy=0.7%0.07 [13],
with U as the mean velocity (U;+ U,)/2. In order to con-
firm these measurements, a technique based on laser fluores-
cence [10] is used to obtain the interface profile, and the flow
rate by film thicknesses. The result of this technique is dis-
played in Fig. 3. The difference in streamwise position of the
interface (AX=~0.4 mm) exceeds the estimated absolute un-
certainties. Two reasons can be put forward: uncertainty on
the capillary numbers, which can have a strong influence on
the total flow rate at those low velocities, and uncertainty of
the exact location of the interface between each particle and
its reflection. Q/Uhy=0.69+0.05 confirms measurements
inside the flow. It should be noted that, due to the low cap-
illary number, the value of Q/Uh, is lower than the usual

- value of Q/Uhy=4/3 encountered in fully flooded roll coat-

ing. However, this value is high enough to avoid reverse flow
in the nip region (the case known as meniscus coating [7]),
thereby guaranteeing that the observed features are genuine
to film splitting. We have observed the same topology for
other conditions where U, # U,, keeping the gap width and
the mean roller speed constant.

In order to compare the preceding results with numerical
simulations of the flow, we have used the spectral element
fluid analysis program NEKTON Version 2.85 [14]. The two-
dimensional (2D) computational domain reproduces the ex-
perimental setup described previously from the nip down-
stream to the films at angular positions of 12° and 31° from
the nip for the upper and lower cylinders, respectively. The
fluid properties duplicate the experiment. Advection terms
are neglected since the Reynolds number is low (Re
=pUhy/pn=0.006), and NEKTON is used to solve a steady
Stokes flow problem, taking gravity into account. The
boundary conditions are the following: Cylinder walls mov-
ing at 5.4 mm/s, free surface conditions along the meniscus,
and across each film outlet 7,=0, and u,=0, where T, refers
to the normal traction and u, to the tangential velocity, in the
local coordinate system. Cases are run for two inlet parabolic
flows, at flow rates Q/Uhy=0.7 and 0.65, to account for
experimental uncertainty. The initial shape of the free surface
is estimated from the experimental results, then it is com-
puted up to convergence (normalized change in mesh coor-
dinates lower than 10~ *) using a remeshing algorithm. With
Ca=0.14, the viscous forces are smaller than the surface ten-
sion effects so that a surface tension dominant algorithm is
used. The mesh consists of 44 spectral elements, and Leg-
endre polynomials of fifth order are used as trial functions in
each macroelement. The resulting stream function pattern for
Q/Uhy=0.65 is displayed near the interface in Fig. 4. The
calculated meniscus shapes for both cases are superimposed
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FIG. 4. Numerical simulation at #(=0.64 mm, Ca;=Ca, =0.14, Q/Uhy=0.65. Mesh structure and stream function . =0 is located at
midgap in the nip. The stream function pattern within the interval /Uhge[—870,145] is displayed. The scale in the lower left corner

represents 1 mm.

in Fig. 3. The difference of 0.05 in the total flow rates causes
a streamwise displacement of 0.12 mm, showing the sensi-
tivity of meniscus position versus flow rate. The numerical
curve at Q/Uhy=0.65 is seen to be in very good agreement
with the fluorescence experiment, calling for improved accu-
racy in PIDV calibration. These results confirm theoretical
arguments about the asymmetric flow topology.

In conclusion, theoretical, experimental, and numerical

results show that stable asymmetric film-splitting flows with
recirculation are generally of the disjoint eddy type. Further
work will have to address the question of which bifurcation
scenarios are followed between different topologies. In par-
ticular, it will be interesting to clarify in which order the
internal and attached eddies appear as parameters are varied,
and to see how several asymmetry sources can cancel each
other to display joint eddy topology.
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